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1. Introduction

Since its inception as a theory of gravity a tremendous amount of work has been done in

General Relativity on the subject of black hole solutions of the Einstein field equations.

As the end points of gravitational collapse, black holes are among the most interesting

objects predicted to exist. The physics of black holes has quickly become one fascinating

area of research as thermodynamics, gravity and quantum theory are intertwined in the

black hole description. In recent years there has been a great deal of attention devoted

towards research in black hole physics in four and higher dimensions. In more than four

dimensions there are generically many available phases of black objects, with rich phase

structures and interesting phase transitions between different kinds of black holes.

The physics of asymptotically Anti-de Sitter (AdS) black hole solutions is of particular

interest due to the AdS/CFT conjecture. The thermodynamic properties of black holes in

AdS offers the possibility of studying the nonperturbative aspects of certain conformal field

theories. For example, the Hawking-Page phase transition [1] between the five dimensional

spherically symmetric black holes and the thermal AdS background was interpreted by

Witten, through AdS/CFT, as a thermal phase transition from a confining to a deconfining

phase in the dual four dimensional N = 4 super Yang-Mills (SYM) theory [4]. Similarly,

the phase structure of Reissner- Nordström-AdS black holes has a striking resemblance to

that of van der Waals-Maxwell liquid-gas systems [5]. Also, in the presence of a negative

cosmological constant Λ, so-called topological black holes have been found to exist (see [6]

for reviews of the subject). For such exotic black holes, the event horizon topology is no
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longer a sphere but can be any Einstein space with negative, positive or zero curvature.

These results at least partially motivate attempts to find new black hole solutions with

negative cosmological constant.

In this paper we present arguments for the existence of yet another class of config-

urations, which we interpret as the AdS counterparts of the Λ = 0 uniform black string

solutions [7]. The black string solutions, present for d ≥ 5 spacetime dimensions, exhibit

new features that have no analogue in the black hole case. In the absence of a cosmological

constant, the simplest vacuum static solution of this type is found by assuming trans-

lational symmetry along the extra coordinate direction and taking the direct product of

the Schwarzschild solution and the extra dimension. This corresponds to a uniform black

string with horizon topology Sd−3 × S1. Though this solution exists for all values of the

mass, it is unstable below a critical value as first shown by Gregory and Laflamme [8]. A

branch of non-uniform black string solutions, depending also on the extra dimension was

found in [9, 10] (see also the recent work [11]). The five dimensional AdS counterparts

of such uniform black strings have been discussed in a more general context in a recent

paper [12]. There are also known exact solutions for magnetically charged black strings

in five-dimensional AdS backgrounds [13]. Their properties have been further discussed

in [14] and they have been extended to higher dimensions in [15]. However, for these so-

lutions the magnetic charge of the black strings depends non-trivially on the cosmological

constant and their limit (if any) in which the magnetic charge is sent to zero in order to

recover the uncharged black strings in AdS is still unknown. Other interesting solutions

whose boundary topology is a fibre bundle S1×S1 ↪→ S2 have been found in [16] and later

generalised to higher dimensions in [17].1

Here we generalise the black string configurations of ref. [12] to higher dimensions,

finding also topological black string solutions with the (d−3)-dimensional sphere S d−3 being

replaced by a (d−3)-dimensional hyperbolic space. The solutions with Sd−3×S1 topology

of the event horizon have a nontrivial zero event horizon limit. We examine the general

properties of these configurations solutions and compute their mass, tension and action by

using a counterterm prescription. More generally, we can replace the (d − 3)-dimensional

angular sector with any Einstein space with positive/negative curvature leading to solutions

with non-trivial boundary topologies.

By dimensionally reducing our black string solutions we find non-trivial black hole

solutions of the Einstein-Dilaton system with a Liouville potential for the dilaton. We also

prove that the reduced action has an effective SL(2,R)-symmetry. We use this symmetry

to generate new charged solutions of the Einstein-Maxwell-Dilaton equations with a Liou-

ville potential. We also compare our solutions with previously known charged black hole

solutions.

Our paper is structured as follows: in the next section we explain the model and derive

the basic equations, while in section 3 we present a computation of the physical quantities

of the solutions such as mass, tension and action. The general properties of the solutions

1Other locally asymptotically AdS geometries with non-trivial boundary geometries and topologies can

be found in [18].
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are presented in section 4 where we show results obtained by numerical calculations. In

the following sections we consider the dimensional reduction of our solutions to (d − 1)-

dimensions, proving the SL(2,R)-symmetry of the reduced action and using it explicitly to

generate charged solutions of the Einstein-Maxwell-Dilaton system with Liouville potential.

We give our conclusions and remarks in the final section.

2. The model

2.1 Action principle and field equations

We start with the following action principle in d-spacetime dimensions

I0 =
1

16πG

∫

M
ddx
√−g(R− 2Λ) − 1

8πG

∫

∂M
dd−1x

√−γK, (2.1)

where Λ = −(d− 1)(d − 2)/(2`2) is the cosmological constant.

We consider the following parametrization of the d-dimensional line element (with

d ≥ 5)

ds2 = a(r)dz2 +
dr2

f(r)
+ r2dΣ2

k,d−3 − b(r)dt2 (2.2)

where the (d−3)-dimensional metric dΣ2
k,d−3 is

dΣ2
k,d−3 =





dΩ2
d−3 for k = +1∑d−3
i=1 dx

2
i for k = 0

dΞ2
d−3 for k = −1 ,

(2.3)

where dΩ2
d−3 is the unit metric on Sd−3. ByHd−3 we will understand the (d−3)-dimensional

hyperbolic space, whose unit metric dΞ2
d−3 can be obtained by analytic continuation of that

on Sd−3. The direction z is periodic with period L.

The Einstein equations with a negative cosmological constant imply that the metric

functions a(r), b(r) and f(r) are solutions of the following equations:

f ′ =
2k(d − 4)

r
+

2(d − 1)r

`2
− 2(d− 4)f

r
− f

(
a′

a
+
b′

b

)
, (2.4)

b′′ =
(d− 3)(d − 4)b

r2
− (d− 3)(d − 4)kb

r2f
− (d− 1)(d− 4)b

`2f
+

(d− 3)ba′

ra

+
(d− 4)b′

r
− (d− 4)kb′

rf
− (d− 1)rb′

`2f
+
a′b′

2a
+
b′2

b
, (2.5)

a′

a
= 2

b
[
`2(d− 3)(d− 4)(k − f) + (d− 1)(d − 2)r2

]
− (d− 3)r`2fb′

r`2f
[
rb′ + 2(d− 3)b

] (2.6)

For k = 0, the Einstein equations admit the exact solution a = r2, f = 1/b =

−2M/rd−3 + r2/`2. This k = 0 solution appears to be unique, corresponding to the known

planar topological black hole, respectively to the AdS soliton [19] (after an analytic con-

tinuation of the coordinates). Therefore in the remainder of this paper we will concentrate

on the k = ±1 cases only.
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2.2 Asymptotics

We consider solutions of the above equations whose boundary topology is the product of

time and Sd−3 × S1, Rd−3 × S1 or Hd−3 × S1. For even d, the solution of the Einstein

equations admits at large r a power series expansion of the form:

a(r) =
r2

`2
+

(d−4)/2∑

j=0

aj

(
`

r

)2j

+ cz

(
`

r

)d−3

+O(1/rd−2),

b(r) =
r2

`2
+

(d−4)/2∑

j=0

aj

(
`

r

)2j

+ ct

(
`

r

)d−3

+O(1/rd−2), (2.7)

f(r) =
r2

`2
+

(d−4)/2∑

j=0

fj

(
`

r

)2j

+ (cz + ct)

(
`

r

)d−3

+O(1/rd−2),

where aj, fj are constants depending on the index k and the spacetime dimension only.

Specifically, we find

a0 =

(
d−4

d−3

)
k , a1 =

(d− 4)2k2

(d− 2)(d− 3)2(d− 5)
, a2 =− (d− 4)3(3d2 − 23d+ 26)k3

3(d− 2)2(d− 3)3(d− 5)(d− 7)
, (2.8)

f0 =
k(d− 1)(d − 4)

(d− 2)(d − 3)
, f1 = 2a1, f2 = − 2(d− 4)3(d2 − 8d+ 11)k3

(d− 2)2(d− 3)3(d− 5)(d − 7)
, (2.9)

their expression becoming more complicated for higher j, with no general pattern becoming

apparent.

The corresponding expansion for odd values of the spacetime dimension is given by:

a(r) =
r2

`2
+

(d−5)/2∑

j=0

aj

(
`

r

)2j

+ζ log

(
r

`

)(
`

r

)d−3

+ cz

(
`

r

)d−3

+O

(
log r

rd−1

)
,

b(r) =
r2

`2
+

(d−5)/2∑

j=0

aj

(
`

r

)2j

+ζ log

(
r

`

)(
`

r

)d−3

+ ct

(
`

r

)d−3

+O

(
log r

rd−1

)
, (2.10)

f(r) =
r2

`2
+

(d−5)/2∑

j=0

fj

(
`

r

)2j

+2ζ log

(
r

`

)(
`

r

)d−3

+ (cz+ct+c0)

(
`

r

)d−3

+O

(
log r

rd−1

)
,

where we note ζ = a(d−3)/2

∑
k>0(d− 2k − 1)δd,2k+1, while

c0 = 0 for d = 5, c0 =
9k3`4

1600
for d = 7, c0 = −90625k4`6

21337344
for d = 9. (2.11)

For any value of d, terms of higher order in `
r depend only on the two constants ct

and cz . These constants are found numerically starting from the following expansion of the

solutions near the event horizon (taken at constant r = rh) and integrating the Einstein
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equations towards infinity:

a(r) = ah +
2ah(d− 1)rh

(d− 1)r2
h + k(d− 4)`2

(r − rh)

+
ah(d− 1)2r2

h[
(d− 1)r2

h + k(d− 4)`2
]2 (r − rh)2 +O(r − rh)3,

b(r) = b1(r − rh)− b1(d− 4)
[
(d− 1)r2

h + (d− 3)k`2
]

2(d− 1)r3
h + 2(d− 4)krh`2

(r − rh)2 +O(r − rh)3, (2.12)

f(r) =
1

rh`2
[
(d− 1)r2

h + k(d− 4)`2
]
(r − rh)

−(d− 4)

2r2
h`

2

[
(d− 1)r2

h + k(d− 3)`2
]
(r − rh)2 +O(r − rh)3,

in terms of two parameters ah, b1. The condition for a regular event horizon is f ′(rh) > 0,

b′(rh) > 0. In the k = −1 case, this implies the existence of a minimal value of rh, i.e. for

a given Λ:

rh > `
√

(d− 4)/(d − 1). (2.13)

Globally regular solutions with rh = 0 exist for k = 1 only. The corresponding expan-

sion near origin r = 0 is:

a(r) = ā0 +
ā0(d− 1)

(d− 2)

(
r

`

)2

+
ā0(d− 1)2

d(d− 2)2(d− 3)

(
r

`

)4

+O(r6),

b(r) = b̄0 +
b̄0(d− 1)

(d− 2)

(
r

`

)2

+
b̄0(d− 1)2

d(d − 2)2(d− 3)

(
r

`

)4

+O(r6), (2.14)

f(r) = 1 +
(d− 1)(d − 4)

(d− 2)(d − 3)

(
r

`

)2

+
2(d− 1)2

d(d− 2)2(d− 3)

(
r

`

)4

+O(r6),

ā0, b̄0 being positive constants.

3. The properties of the solutions

As with the asymptotically flat case, one expects the values of mass and tension to be

encoded in the constants ct and cz which appear in (2.7), (2.10). However, in the pres-

ence of a non-vanishing cosmological constant, the generalization of Komar’s formula is

not straightforward and it requires the further subtraction of a contribution from the

background configuration in order to render finite results when computing the conserved

charges.

While for k = 1 one may subtract the globally regular configuration contribution, there

is no obvious choice for such a background in the k = −1 case. Therefore we prefer to use

a different approach and follow the general procedure proposed by Balasubramanian and

Kraus [20] to compute the conserved quantities for a spacetime with negative cosmological

constant. This technique was inspired by the AdS/CFT correspondence and consists of

adding to the action suitable boundary counterterms Ict, which are functionals only of
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curvature invariants of the induced metric on the boundary. Such terms will not interfere

with the equations of motion because they are intrinsic invariants of the boundary metric.

By choosing appropriate counterterms, which cancel the divergences, one can then obtain

well-defined expressions for the action and the energy momentum of the spacetime. Unlike

the background subtraction methods, this procedure is intrinsic to the spacetime of interest

and it is unambiguous once the counterterm action is specified.

Thus we have to supplement the action in (2.1) with [20, 21]:

I0
ct =

1

8πG

∫
dd−1x

√−γ
{
−d− 2

`
− `Θ (d− 4)

2(d − 3)
R− `3Θ (d− 6)

2(d− 3)2(d− 5)

(
RabR

ab− d− 1

4(d−2)
R2

)

+
`5Θ (d− 8)

(d− 3)3(d− 5)(d− 7)

(
3d− 1

4(d− 2)
RRabRab −

d2 − 1

16(d − 2)2
R3

−2RabRcdRacbd −
d− 1

4(d− 2)
∇aR∇aR +∇cRab∇cRab

)
+ · · ·

}
, (3.1)

where R and Rab are the curvature and the Ricci tensor associated with the induced metric

γ. The series truncates for any fixed dimension, with new terms entering at every new

even value of d, as denoted by the step-function (Θ (x) = 1 provided x ≥ 0, and vanishes

otherwise).

However, given the presence of log(r/`) terms in the asymptotic expansions (2.10) (for

odd d), the counterterms (3.1) regularise the action for even dimensions only. For odd

values of d, we have to add the following extra terms to (2.1) [22]:

Isct=
1

8πG

∫
dd−1x

√−γ log

(
r

`

){
δd,5

`3

8

(
1

3
R2 − RabR

ab

)

− `5

128

(
RRabRab−

3

25
R3−2RabRcdRacbd−

1

10
Rab∇a∇bR+Rab¤Rab−

1

10
R¤R

)
δd,7+· · ·

}
.

For the Kerr-AdS [23] class of higher-dimensional rotating black holes in spaces with nega-

tive cosmological constant, these terms vanish. However we shall see that they contribute

non-trivially for the solutions we obtain.

Using these counterterms in odd and even dimensions, one can construct a divergence-

free boundary stress tensor from the total action I = I0 + I0
ct + Isct by defining a boundary

stress-tensor:

Tab =
2√−γ

δI

δγab
.

Thus a conserved charge

Qξ =

∮

Σ
dd−2Sa ξbTab, (3.2)

can be associated with a closed surface Σ (with normal na), provided the boundary ge-

ometry has an isometry generated by a Killing vector ξa [24]. If ξ = ∂/∂t then Q is the

conserved mass/energy M . Similar to the Λ = 0 case [25], there is also a second charge

associated with ∂/∂z, corresponding to the solution’s tension T .

– 6 –
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The computation of Tab is straightforward and we find the following expressions for

mass and tension:

M = M0 +M (k,d)
c , M0 =

`d−4

16πG

[
cz − (d− 2)ct

]
LVk,d−3 , (3.3)

T = T0 + T (k,d)
c , T0 =

`d−4

16πG

[
(d− 2)cz − ct

]
Vk,d−3 , (3.4)

where Vk,d−3 is the total area of the angular sector. Here M
(k,d)
c and T (k,d)

c are Casimir-like

terms which appear for an odd spacetime dimension only,

M (k,d)
c = −LT (k,d)

c =
`d−4

16πG
Vk,d−3L

(
1

12
δd,5 −

333

3200
δd,7 + . . .

)
. (3.5)

We note that the considered Lorentzian solutions extremize also the Euclidean action since

the analytic continuation t → iτ has no effect at the level of the equations of motion.

The Hawking temperature of these solutions is computed by demanding regularity of the

Euclideanized manifold as r → rh:

TH =
1

4π

√
b1
rh`2

[
(d− 1)r2

h + k(d− 4)`2
]
. (3.6)

Thus we can proceed further by formulating gravitational thermodynamics via the Eu-

clidean path integral [26]

Z =

∫
D [g]D [Ψ] e−I[g,Ψ] ' e−I ,

Here, D [g] is a measure on the space of metrics g, D [Ψ] a measure on the space of

matter fields Ψ, I [g,Ψ] is the action in terms of the metrics and matter fields and one

integrates over all metrics and matter fields between some given initial and final Euclidean

hypersurfaces, taking τ to have a period β = 1/TH . Semiclassically the result is given

by the classical action evaluated on the equations of motion, and yields to this order an

expression for the entropy:

S = βM − I, (3.7)

upon application of the quantum statistical relation to the partition function.

To evaluate the black string action, we integrate the Killing identity ∇µ∇νζµ = Rνµζ
µ,

for the Killing vector ζµ = δµt , together with the Einstein equation Rt
t = (R − 2Λ)/2. Thus,

we isolate the bulk action contribution at infinity and at r = 0 or r = rh. The divergent

contributions given by the surface integral term at infinity are also canceled by Isurface +Ict.

Together with (3.7), we find S = AH/4G, where AH = rd−3
h Vk,d−3L

√
ah is the event horizon

area. The same approach applied to the Killing vector ζµ = δµz yields the result:

I = −βT L. (3.8)

The relations (3.7) and (3.8) lead to a simple Smarr-type formula, relating quantities

defined at infinity to quantities defined at the event horizon:

M + T L = THS , (3.9)
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(note that the corresponding relation in the Λ = 0 case is d−dependent [25]).

This relation also provides a useful check of the accuracy of the numerical solutions we

obtain. We see now that in the limit of zero event horizon radius, the absolute values of

the mass of solutions per unit length of the extra-dimension z and the tension are equal.

4. Numerical results

Starting from the expansion (2.12) and using a standard ordinary differential equation

solver, we integrated the system (2.4)–(2.6) adjusting for fixed shooting parameters and

integrating towards r→∞. The integration stops when the asymptotic limit (2.7), (2.10)

is reached. Given (k, d, Λ, rh), solutions with the right asymptotics exist for one set of

the shooting parameters (ah, b1) only.

The results we present here are found for ` = 1. However, the solutions for any

other values of the cosmological constant are easily found by using a suitable rescaling of

the ` = 1 configurations. Indeed, to understand the dependence of the solutions on the

cosmological constant, we note that the Einstein equations (2.4)–(2.6) are left invariant by

the transformation:

r → r̄ = λr, `→ ¯̀= λ`. (4.1)

Therefore, starting from a solution corresponding to ` = 1 one may generate in this

way a family of ` 6= 1 vacuum solutions, which are termed “copies of solutions“ [27]. The

new solutions have the same length in the extra-dimension. Their relevant properties,

expressed in terms of the corresponding properties of the initial solution, are as follows:

r̄h = λrh, Λ̄ = Λ/λ2, T̄H = TH/λ, M̄ = λd−4M, and T̄ = λd−4T . (4.2)

Now, given the full spectrum of solutions for ` = 1 (with rmin < rh < ∞), one may find

the corresponding branches for any value of Λ < 0.

Thus these solutions do not approach the uniform black string configurations as Λ→ 0

(note also that the local mass/tension of the Λ = 0 black strings decay as 1/rd−4, whereas

here the decay is 1/rd−3).

We have found asymptotically AdS numerical solutions in all dimensions between five

and twelve. We conjecture that they exist for any d and, in the case k = 1, for any value

of the event horizon rh. For d = 5, k = 1 our findings are in very good agreement with

those presented in ref. [12].

The k = 1 solutions have a nontrivial zero event horizon radius limit corresponding

to AdS vortices. As rh → 0 we find e.g. ct(d = 6) ' −0.0801, ct(d = 7) ' −0.0439,

ct(d = 8) ' 0.0403, ct(d = 9) ' 0.0229, while ct(d = 10) ' −0.0246.

In the same limit, we find a(r) = b(r) with a nonzero value a(0) = ā0, e.g. ā0(d =

6) ' 0.744, ā0(d = 7) ' 0.797, ā0(d = 8) ' 0.8316, ā0(d = 9) ' 0.8561, while ā0(d =

10) ' 0.87432. This assigns a nonzero mass and tension to the globally regular solutions

according to (3.3).

2The appearance of these values in the expansion at the origin suggests that analytic vortex solutions,

if they exist, should be sought using a set of variables other than (a, b, f).
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Figure 1: The mass-parameter M , the tension T , (without the Casimir terms) the value of the

metric function a(r) at the event horizon as well as the Hawking temperature TH and the entropy

S of k = 1 black string solutions are represented as functions of the event horizon radius in d = 6,

respectively d = 9 dimensions. In the latter diagram we plot −S, − T0 so that they can be easily

distinguished from the curve for M0.

The dependence of various physical parameters on the event horizon radius is presented

in figure 1 for d = 6 and d = 9 solutions with k = 1 and figure 2 for k = −1 configurations

in d = 7 and d = 10 dimensions.

These plots retain the basic features of the solutions we found in other dimensions

(note that we set Vk,d−3L = 1 in the expressions for the mass, tension and entropy and we

subtracted the Casimir energy and tension in odd dimensions).

The mass, temperature, tension and entropy of k = −1 solutions increase monotoni-

cally with rh.

For all the solutions we studied, the metric functions a(r), b(r) and f(r) interpolate

monotonically between the corresponding values at r = rh and the asymptotic values

at infinity, without presenting any local extrema. As a typical example, in figure 3 the

metric functions a(r), b(r) and f(r) are shown for a d = 6, k = 1 solution with rh =
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Figure 2: Same as figure 1 for k = −1 black string solutions in dimensions d = 7, respectively

d = 10.

0.5, as functions of the radial coordinate r. One also finds numerically that the term

r2/`2 starts dominating the profile of these functions very rapidly, which implies a small

difference between the metric functions for large enough r, as expected from the asymptotic

expansions given in section 2.

5. SL(2,R) symmetry in (d− 1)-dimensions

Consider Einstein gravity coupled with a cosmological constant in d-dimensions. Its action

is described by the Lagrangian:

Ld = ẽR̃− 2ẽΛ, (5.1)

where ẽ =
√−g̃.

Let us assume that the fields are stationary and that the system admits two commuting

Killing vectors (one of them is timelike, while the other corresponds to an isometry along

– 10 –
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Figure 3: The profiles of the metric functions a(r), b(r) and f(r) are shown for a typical k = 1

black string solution with d = 6, k = 1 and rh = 0.5.

a spatial direction z). We will perform a dimensional reduction from d-dimensions down

to (d− 2)-dimensions along the two directions z and t. Our metric ansatz is:

ds2
d = e

−
q

2(d−3)
d−2

φ
(dz + χdt)2

+e

q
2

(d−2)(d−3)
φ
[
− e−

q
2(d−4)
d−3

φ1dt2 + e

q
2

(d−3)(d−4)
φ1
ds2
d−2

]
. (5.2)

In the first step of the dimensional reduction, reducing from d to (d− 1)-dimensions along

the z-direction, one obtains the following (d− 1)-dimensional Lagrangian3:

Ld−1 = eR− 2eΛe

q
2

(d−2)(d−3)
φ − 1

2
e(∂φ)2 − 1

4
ee
−
q

2(d−2)
d−3

φ
(F(2))

2, (5.3)

while the metric and the matter fields in (d − 1)-dimensions are given by the dilaton φ,

respectively the metric and the 1-form potential:

ds2
d−1 = −e−

q
2(d−4)
d−3

φ1dt2 + e

q
2

(d−3)(d−4)
φ1
ds2
d−2,

A(1) = χdt. (5.4)

Here F(2) = dA(1) is the 2-form field strength of the electromagnetic potential A(1).

Performing a further dimensional reduction along the timelike direction, the Lagran-

gian in (d− 2)-dimensions is given by:

Ld−2 = eR− 2eΛe

q
2

(d−2)(d−3)
φ+
q

2
(d−3)(d−4)

φ1 − 1

2
e(∂φ)2 − 1

2
e(∂φ1)2

+
1

2
ee

q
2(d−4)
(d−3)

φ1−
q

2(d−2)
d−3

φ
(∂χ)2.

3We denote e =
√−g.
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We shall prove next that the above Lagrangian has a global symmetry group SL(2, R).

We perform first a rotation of the scalar fields:

(
φ̂

φ̂1

)
=



√

d−4
2(d−3)

√
d−2

2(d−3)√
d−2

2(d−3) −
√

d−4
2(d−3)



(
φ

φ1

)
. (5.5)

Now, let us define the matrix M by:

M =

(
e−φ̂1 χe−φ̂1

χe−φ̂1 −eφ̂1 + χ2e−φ̂1

)
. (5.6)

Note that detM = −1 hence M is not an SL(2,R) matrix. Then it is easy to see that

(d− 2)-dimensional Lagrangian can be written in the following compact form:

Ld−2 = eR− 2eΛe
2φ̂√

(d−2)(d−4) − 1

2
e(∂φ̂)2 +

1

4
etr[∂M−1∂M]. (5.7)

The Lagrangian is manifestly invariant under SL(2,R) transformations if one considers the

following transformation laws for the potentials:

gµν → gµν , Λ→ Λ, M→ ΩTMΩ, φ̂→ φ̂. (5.8)

where Ω ∈ SL(2,R).

6. Einstein-Maxwell-Liouville black holes

Let us apply this technique to the new black string solutions in AdS backgrounds presented

in the previous sections. Starting with the d-dimensional metric (2.2) and performing a

double dimensional reduction along the z and t coordinates one can read directly the fields

in the (d− 2)-dimensional theory as:

ds2
d−2 = (ab)

1
d−4

(
dr2

f
+ r2dΣ2

k,d−3

)
,

e
−
q

2(d−3)
d−2

φ
= a, e

−
q

2(d−4)
d−3

φ1 = ba
1
d−3 , χ = 0. (6.1)

In order to apply the solution generating technique from the previous section, we shall

perform the rotation of the scalar fields as given by (5.5). This yields

eφ̂ = (ab)
− 1

2

q
d−2
d−4 , eφ̂1 =

(
b

a

) 1
2

. (6.2)

We are now ready to apply the SL(2,R)-symmetry transformations as given in (5.8). For

this purpose let us parameterize the matrix Ω in the form:

Ω =

(
α β

γ δ

)
, αδ − βγ = 1. (6.3)

– 12 –
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From the general form of the matrix M one can read the following scalar fields4:

e−φ̂
′
1 =

α2a− γ2b√
ab

, χ′ =
αβa− γδb
α2a− γ2b

. (6.4)

Using now the inverse transformation of the one considered in (5.5) one finds the following

scalar fields corresponding to the final solution:

eφ = (α2a− γ2b)
−
q

d−2
2(d−3) , eφ1 = (ab)

−
q

d−3
2(d−4) (α2a− γ2b)

−
q

d−4
2(d−3) . (6.5)

Gathering all these results, one obtains in (d− 1)-dimensions the following fields:

ds2
d−1 = −ab(α2a− γ2b)−

d−4
d−3 dt2 + (α2a− γ2b)

1
d−3

dr2

f
+ r2(α2a− γ2b)

1
d−3dΣ2

k,d−3,

eφ = (α2a− γ2b)
−
q

d−2
2(d−3) , A(1) =

αβa− γδb
α2a− γ2b

dt . (6.6)

which are a solution of the equations of motion derived from the Lagrangian:

Ld−1 = eR− 2eΛe

q
2

(d−2)(d−3)
φ − 1

2
e(∂φ)2 − 1

4
ee
−
q

2(d−2)
d−3

φ
(F(2))

2, (6.7)

which corresponds to an Einstein-Maxwell-Dilaton theory with a Liouville potential for the

dilaton.

As a consistency check of our final solution, let us notice that if one takes Ω = I2 then

one obtains the initial black string solution (2.2). Also, if α = δ = cosh p and β = γ = sinh p

the effect of the SL(2,R) transformation is equivalent to a boost of the initial black string

solution in the z direction.

In general, for a generic Kaluza-Klein dimensional reduction, if the isometry generated

by the Killing vector ∂
∂z has fixed points then the dilaton φ will diverge and the (d − 1)-

dimensional metric will be singular at those points. However, this is not the case for our

initial black string solutions and therefore the (d−1)-dimensional fields are non-singular in

the near-horizon limit r → rh. Indeed, in the near horizon limit b(r)→ 0 while a(r)→ a0

and the (d − 1)-dimensional fields are non-singular. The situation changes when we look

in the asymptotic region. Recall from (5.2) that

gzz ≡ e−
q

2(d−3)
d−2)

φ
= (α2a− γ2b) (6.8)

gives the radius squared of the z-direction in d-dimensions and that it diverges in the large

r limit. Then for generic values of the parameters in Ω we find that gzz ∼ r2 and the

dilaton field in (d − 1)-dimensions will diverge in the asymptotic region. Physically, this

means that the spacetime decompactifies at infinity; the higher-dimensional theory should

be used when describing such black holes in these regions. It is amusing to note that in this

limit even though the Liouville potential goes rapidly to zero, the asymptotic structure of

the (d− 1)-dimensional metric is still non-standard. On the other hand one can choose the

4In what follows we shall drop the prime symbol from the fields.
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parameters in Ω such that α = γ. In this case the asymptotic behaviour of the (d − 1)-

dimensional fields is quite different as gzz ∼ cz−ct
rd−3 and the radius of the z direction collapses

to zero asymptotically. However the dilaton field still diverges at infinity.

Note also that starting with the regular solution in d-dimensions one obtains a globally

regular (d−1)-dimensional configuration upon applying the above solution-generating pro-

cedure. This is a solution of the Einstein-Dilaton system only, with a Liouville potential

term for the dilaton. Indeed, starting with the near-origin expansion given in (2.14) it

is easy to see that the (d − 1)-dimensional solution (6.6) will be a globally regular solu-

tion of the Einstein-Dilaton system with a Liouville potential term of the dilaton once the

condition (α2 − γ2)a0 = 1 is satisfied. Notice that, since in the regular solution we have

a(r) = b(r), then the electromagnetic gauge field A(1) is constant and, therefore, trivial.

However, this is not the case for the dilaton.

It is instructive to compare our solution of the equations of motion derived from (6.7)

with the previously known exact solutions from [28] (see also [29] for the dyonic extensions).

Consider for instance the solution given in eqs. (6.8) in [28]:5

ds2
d−1 = −U(r)dt2 +

dr2

U(r)
+ γ2r

2
d−1 dΩ2

d−3,

U(r) = r
2(d−2)
d−1

(
− (d− 1)2(d− 4)

2γ2(d− 3)2
− 4M(d− 1)

(d− 3)γd−3r
2(d−3)
d−1

+
Q2(d− 1)2

(d− 3)2γ2(d−3)

1

r
4(d−2)
d−1

)
,

e

q
2

(d−2)(d−3)
φ

= r−
2
d−1 , At =

(d− 1)Q

(d− 3)γd−3

1

r
2(d−3)
d−1

, Λ =
(d− 2)(d − 4)

2γ2
.

Lifting now the solution to d-dimensions by using (5.2), performing the coordinate trans-

formation R =
(
d−1
d−3

)
r
d−3
d−1 and rescaling the z-coordinate to absorb a constant factor one

obtains:

ds2
d = R2

(
dz − J

2R2
dt

)2

−
(
−M̃ − R2

l2
+

J2

4R2

)
dt2 +

+

(
−M̃ − R2

l2
+

J2

4R2

)−1

dR2 + γ2dΩ2
d−3,

where we defined:

J =
2Q(d− 1)2

(d− 3)2γd−3
, M̃ =

4(d − 1)M

(d− 3)γd−3
, Λ =

(d− 2)

l2
.

It is now manifest that the d-dimensional solution is the direct product of the analytic con-

tinuation of the three-dimensional rotating BTZ black hole [32] with a (d− 3)-dimensional

sphere. Note that if one analytically continues the parameters γ, l and exchanges the

sphere with the metric of the hyperboloid Hd−3, one obtains by dimensional reduction

5After canonically normalising the kinetic terms of the dilaton and the electromagnetic field, comparing

the two actions one reads n = d− 1, a =
√
d− 2, b = 2

(d−3)
√
d−2

so that ab = 2
n−2

. We also set φ0 = 0 for

simplicity.
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a non-asymptotically flat black hole with hyperbolic topology. By contrast, in our d-

dimensional black string solutions there is a non- trivial warp factor multiplying the metric

element of the sphere/hyperboloid; therefore the (d − 1)-dimensional black hole solution

is clearly different. Similar topological black hole solutions of Einstein-Maxwell-Dilaton

theory with a Liouville potential for the dilaton that arise via dimensional reduction from

higher dimensions have been discussed in [30, 31].

7. Discussion

In this work we have presented arguments for the existence of a new class of solutions of

Einstein gravity with negative cosmological constant. For such solutions the topological

structure of the boundary is the product of time and Sd−3 × R or Hd−3 × R and they

correspond to black strings with the horizon topology Sd−3× S1 or Hd−3 ×R respectively

(here the black string is wrapping the S1 circle). More generally, we can replace the

(d− 3)-dimensional sphere (hyperboloid) with any Einstein space with positive (negative)

curvature, normalised such that its Ricci tensor is Rab = k(d − 4)gab, with k = 0,±1.

We expect these solutions to be relevant in the context of AdS/CFT and more generally

in the context of gauge/gravity dualities. Let us consider for example the 5-dimensional

black string solution. The background metric upon which the dual field theory resides is

found by taking the rescaling hµν = limr→∞ `2

r2γµν .

Restricting to the five-dimensional k = ±1 black strings, we find

ds2 = habdx
adxb = −dt2 + dz2 + `2dΣ2

k, (7.1)

and so the conformal boundary, where the N = 4 SYM theory lives, is R × S1 × S2 for

k = 1 or R× S1 ×H2 for k = −1.

The expectation value of the stress tensor of the dual CFT can be computed using the

relation [33]:

√
−hhab < τbc >= lim

r→∞
√−γγabTbc, (7.2)

which gives

< τ tt >=
36ct − 12cz − 1

192πG`
, < τ zz >=

−12ct + 36cz − 1

192πG`
, (7.3)

< τ θθ >=< τφφ >=
−12(ct + cz) + 2

192πG`
.

As expected, this stress tensor is finite and covariantly conserved. However it is not traceless

and its trace is precisely equal to the conformal anomaly of the boundary CFT [22]:

A = − 2`3

16πG

(
−1

8
RabR

ab +
1

24
R2

)
. (7.4)

A similar computation performed for the seven-dimensional case leads to a boundary stress

tensor whose trace matches precisely the conformal anomaly of the dual six-dimensional

superconformal (2, 0) theory [22, 34].
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Figure 4: The free energy vs. the temperature for the small and large k = 1 black string solutions.

Here we have subtracted the free energy contribution F0 of the globally regular solution. Note that

the branch corresponding to the small black holes is always positive, while the one for large black

holes changes sign, rapidly becoming negative at high temperatures.

We note that the analytic continuation z → iu, t→ iχ in the general line element (2.2)

gives a bubble solution:

ds2 = −a(r)du2 + b(r)dχ2 +
dr2

f(r)
+ r2dΣ2

k,d−3, (7.5)

(where χ has a periodicity β = 1/TH) whose properties can be discussed by using the

methods in [12]. We find for instance a ‘small’ bubble that is the analytic continuation of

the small black hole solution and also a ‘large’ bubble, which is the analytical continuation

of the large black hole solution. Note that since we found that a(r) = b(r) for our regular

solution, its analytic continuation leads to the same regular solution. Using the counterterm

approach it is possible to compute the mass of these bubble solutions with the result that:

Mbubble = −βT. (7.6)

where T is given in (3.3) while β = 1/TH , where TH is the Hawking temperature given

in (3.6). We find then that for small values of β (i.e. small size of the χ-circle at infinity) the

‘large’ bubble solution has less mass than either the regular solution or the ‘small’ bubble
6, while for circles with size large enough the background solution has the minimum energy.

As with the spherically symmetric Schwarzschild-AdS solutions, the temperature of

the k = 1 black string solutions is bounded from below, as we can see in figures 1 and 2.

At low temperatures we have a single bulk solution, which we conjecture to correspond

to the thermal globally regular solution. At high temperatures there exist two additional

solutions that correspond to the small and large black holes. The free energy F = I/β of

6We thank Keith Copsey and Gary Horowitz for pointing this out to us.
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the k = 1 solutions is positive for small rh and negative for large rh. This suggests that the

phase transition found in [1] occurs here as well. Indeed, in figure 4 we plot the free energy

versus the temperature for the small and large black hole solutions for 5 ≤ d ≤ 10. We

observe the physics familiar from the Schwarzschild-AdS case: we have the two branches

consisting of smaller (unstable) and large (stable) black holes. The entire unstable branch

has positive free energy while the stable branch’ free energy goes rapidly negative for all

T > Tc. Here Tc is the critical temperature at which we observe a phase transition between

the large black holes and the thermal globally regular background.

As avenues for further research, it would be interesting to consider black hole solutions

with an Sd−2 event horizon topology, whose conformal infinity is the product of time and

Sd−3×S1, presenting the asymptotic expansion (2.7), (2.10). Such solutions are known to

exist for Λ = 0, approaching asymptotically (d − 1)-dimensional Minkowski space times a

circle Md−1 × S1 [35]. Also, the black string solutions may be useful in finding the AdS

version of the d = 5 asymptotically flat black rings [36]. The heuristic construction of

black rings discussed in [37] applies in this case too, and we expect an AdS black ring to

approach the black string solution in the limit where the radius of the ring circle grows

very large.

Another interesting issue to investigate is the Gregory-Laflamme instability [8]. We

expect the black string solutions discussed in this paper to be unstable for some critical

values of the parameters.

We also note that the existence of globally regular solutions and of black hole solutions

suggests that there might be some kind of critical phenomena associated with the collapse of

matter to the black string, in keeping with the critical phenomena encountered in the study

of the gravitational collapse of matter fields in spaces with spherical symmetry (see [38] and

the references therein). This is because a given distribution of matter undergoing collapse

could potentially form either of these solutions, depending upon certain parameters in the

initial data. At the bifurcation point one presumably would see critical phenomena. A

consideration of these aspects is outside the scope of this work.

Further analysis of these metrics and their role in string theory remain interesting

issues to explore in the future.
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